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Abstract:  A method for directly simulating coherent backscattering of 
polarized light by a turbid medium has been developed based on the Electric 
field Monte Carlo (EMC) method.  Electric fields of light traveling in a pair 
of time-reversed paths are added coherently to simulate their interference.  
An efficient approach for computing the electric field of light traveling 
along a time-reversed path is derived and implemented based on the time-
reversal symmetry of electromagnetic waves.  Coherent backscattering of 
linearly and circularly polarized light by a turbid medium containing Mie 
scatterers is then investigated using this method.       
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1. Introduction  

The study of light propagation in turbid media is a fundamental problem in applied science 
that has vast applications in many different fields [1-4].  Inside turbid media, light is multiply 
scattered and the behavior of light propagation is usually described by radiative transfer, 
where the interference effects of light are ignored.  The interference of light, however, does 
survive inside the coherent backscattering cone around the exact backscattering direction for 
incident coherent light [5, 6].  This is the celebrated phenomenon of coherent backscattering 
(CBS), also known as weak localization of light.   

Formally, CBS is the consequence of constructive interference of photons which travel in 
a pair of time-reversed paths.  The phase difference between two partial waves traveling in a 
pair of time-reversed paths annihilates when the backscattered light remits in the direction 
close to that of exact backscattering.  Inside the backscattering cone, the intensity of light 

needs to be written as 
2Rev

out out+E E , where Re, v
out outE E  are the electric fields of the two partial 

waves, roughly double the intensity 
22 Rev

out out+E E  when backscattered light is assumed to be 

incoherent.   
Most conventional Monte Carlo simulations trace the Stokes vector [7-11]: 

( , , , )TI Q U V=I ,   
where 

2 22 2 * * * *, , ,x y x y x y x y x y x yI E E Q E E U E E E E V i E E E E= + = − = + = − −  

and ,x yE  are the complex electric field components perpendicular to each other and the 

propagation direction of light.  The superscript T  refers to the transpose of the matrix and 
 denotes ensemble average.  Recently, the Electric field Monte Carlo (EMC) method was 

developed by us to simulate polarized light propagating through turbid media [12,13].  The 
electric field, rather than the Stokes vector, of light is traced in EMC.  The complete phase of 
light is accrued from both light scattering by particles and propagation through the host 
medium.  EMC is hence most amenable to study coherence phenomena of multiple scattering 
light, in particular, CBS. 

In this paper, we first derive a relation between the electric fields of light traveling in a 
pair of time-reversed paths based on the time reversal symmetry of electromagnetic waves.  
This is done in section 2 and the electric field of light traveling in the time-reversed path is 
shown to be computed from that of light traveling in the forward path, greatly reducing the 
computation time.  The coherent backscattering of circularly polarized light and linearly 
polarized light is then studied in section 3.  Their differences in the dependence of the 
coherent backscattered light on the azimuthal angle and the dependence of the coherent 
enhancement on the polar angle are investigated.  Concluding remarks are presented in section 
4.   

2. Theory 

The underlying equation for the updating rule of the electric field of scattered light [14] in 
EMC is: 
 

 (1) 
 
where E  is the complex electric field with components parallel and perpendicular to the 
previous scattering plane, 'E  is the complex electric field with components parallel and 
perpendicular to the present scattering plane, S  is the amplitude scattering matrix dependent 
on the scattering angle θ  between the incoming propagation direction and outgoing 
propagation direction, and R  is the rotation matrix dependent on the angle φ  between the 

' ,SR=E E

#90654 - $15.00 USD Received 7 Dec 2007; revised 27 Jan 2008; accepted 6 Feb 2008; published 9 Apr 2008

(C) 2008 OSA 14 April 2008 / Vol. 16,  No. 8 / OPTICS EXPRESS  5729



incoming perpendicular electric field component and the outgoing perpendicular electric field 
component.  The rotation matrix R  rotates the reference frame φ  degrees azimuthally to align 
the incoming perpendicular electric field component to the normal of the present scattering 
plane.  Equation (1) can be explicitly written as the following for Mie scatterers: 
 

 
(2) 

 
 
where 1E  and 2E  are the complex parallel and perpendicular components of the incoming 

electric field and '
1E  and '

2E  are the complex electric field components after the scattering 

event.  The properties of the scattering particle are contained in the S  matrix:  1S  and 2S  
dependent on the refractive indices inside and outside the particle as well as the size of the 
particle and the wavelength of the incident light. 

2.1 Electric field of the partial waves in the forward and time-reversed paths 

 

 

 
 
 

 
 
 

'
2 11

'
1 22

( ) 0 cos sin
,

0 ( ) sin cos

S EE

S EE

θ φ φ
θ φ φ

⎞⎛ ⎞⎡ ⎤ ⎛⎡ ⎤
=⎟⎜ ⎟⎜⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦ ⎝ ⎠⎝ ⎠

Fig. 1.  A pair of partial waves propagating along the forward and reverse 
paths. The numbered circles are the scatterers.   In the forward direction, 

light enters the media in the direction 0s  and encounters the first scattering 

event at the site “1”.  After being scattered with an angle of 
1

θ , light 

propagates in the 1s  direction.  Light leaves in the ns  direction after the 

last scattering at the site “n”.  In the reverse path, light is incident in the 

direction 0s  and is first scattered by the scatterer “n”, the last scatterer in 

the forward path, with a scattering angle of ,n Rθ   and to the 1n−−s  

direction.  At the last scattering event in the reverse path, light is scattered 

at the site “1” with a scattering angle of 1,Rθ  and escapes the medium in 

the same direction ns  that light remits in the forward path. 
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Figures 1 and 2 illustrate scattering events in the forward and reverse direction.   
 
 

 
The local coordinate system described by three vectors m , n , and s  is rotated after every 
scattering event.  Here m  is the direction of the parallel electric field component and n  is the 
direction of the perpendicular electric field component.  The vector n  is perpendicular to the 
scattering plane spanned by the previous propagation direction and the current propagation 
direction, s .    

As is displayed in Figs. 1 and 2, in the forward path, light is scattered to the 1s  direction 

after the first scattering event; 0φ  is the angle formed between the incoming perpendicular 

electric field component and 1 0 1 0 1/= × ×n s s s s .  After a total of n  scattering events, light is 

scattered into the direction ns  and escapes the medium.  1nφ −  is the angle formed between 

1 2 1 2 1/n n n n n− − − − −= × ×n s s s s  and 1 1/n n n n n− −= × ×n s s s s .  When the path is reversed, the first 

scattering event occurs at the thn scatterer, where light is scattered from 0s  to 1n−−s .  nφ  is the 
angle formed between the incoming perpendicular electric field component and 

0 1 0 1' ( ) / ( )n n− −= × − × −n s s s s  and '
nφ  is the angle formed between 'n  and 

1 1 2 1 2( ) ( ) / ( ) ( )n n n n n− − − − −− = − × − − × −n s s s s .  After the '
nφ  rotation, the second scattering event 

in the time-reversed path occurs at the 1n −  scatterer, followed by a rotation of 

2nφ − azimuthally along 2n−−s  from 1n−−n  to 2n−−n .  This continues until the last site that 
scatters light in the reverse path, which is the first site in the forward path.  At this last 
scattering event, light is scattered into ns  from 1−s .  1φ  is the angle between 

2 2 1 2 1( ) ( ) / ( ) ( )− = − × − − × −n s s s s  and 1 1 0 1 0( ) ( ) / ( ) ( )− = − × − − × −n s s s s  and '
1φ  is the angle 

between 1−n  and 1 1" ( ) / ( )n n= − × − ×n s s s s .  The angle 1 ' 0φ =  if 0n = −s s .  After a total of 

n  scattering events the electric field in the forward path is hence given by: 
 

(3) 
 
and the electric field in the reverse path is given by: 
 

(4) 
 
Here the superscript of S  denotes the site at which the scattering event takes place. 
 

( ) ( 1) (2) (1)

1 1 1 2 2 2 2 1 1 1 0 0( , ) ( ) ( , ) ( )... ( ) ( , ) ( ) ( , ) ( ) ,n n

out n n n n n n inS R S R R S R S Rφ φ φ φ φ−
− − − − −=E s s s s s s s s E

Re (1) ( 2 ) ( 1) ' ( )

1 1 1 1 2 2 2 2 1 1 0
( , ) ( ') ( ) ( , ) ( )... ( ) ( , ) ( ) ( , ) ( ) .v n n

out n n n n n n n inS R R S R R S R S Rφ φ φ φ φ φ−

− − − −
= − − − − − −E s s s s s s s s E

Fig. 2.  The azimuthal rotations of the normal of the scattering plane along 
the forward and reverse paths.  In the forward path, light is rotated for an 

azimuthal angle of 1i−φ  at the i-th scattering event.  In the reverse path, 

except for three special rotations of angles , ',n nφ φ  and 
'
1,φ  all the other 

rotations in the reverse path use the same φ  angles as those in the forward 
path.  See the text for details.  
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2.2 Special azimuthal rotations in the time-reversed path 

Two special rotations are needed at the scatterer " "n  (the first scatterer in the reverse path) in 
order to align the reference frame to the scattering plane spanned by 1n−−s  and 2n−−s .  Let 

0m  and 0n  be the directions of the incoming parallel electric field and the incoming 
perpendicular electric field, respectively.  In the reverse path, the first two rotations can be 
described by the following expression: 
 

 
 
 
 
 
The first rotation, ( )nR φ , aligns the perpendicular electric field of the incident beam to the 

normal of the scattering plane.  The second rotation, '( )nR φ , aligns 'm  to 1n−m , and 'n  to 

1n−−n .  The direction, 1n−−n , is the normal of the scattering plane for the upcoming scattering 
event at the second scatterer " 1"n −  in the reverse path.  

At the last scattering event in the reverse path, a special rotation is also required.  That is: 
 

 
 
 
                                                                                                                 
 
Prior to the last scattering event at the scatterer “1,” the local coordinate system is:  

1 1 1( , , )T− −m n s .  The rotation '
1( )R φ  aligns the perpendicular electric field component to the 

normal of the upcoming scattering plane spanned by 1−s  and ns .  "m  and "n  are the 
directions of the outgoing parallel and perpendicular electric field components, respectively. 

2.3 Relation between electric fields in the forward and time-reversed paths 

Let us take the middle portions of Eqs. (3) and (4) and call them T  and RevT , respectively: 
 

(5) 
 
and 
 

(6) 
 
T  and RevT  are related as will be shown.  Indeed, the transpose of T  is given by 
 

(7) 
 
Noting that 

 
(8) 

 
and the scattering amplitude matrices in the forward path and its time reversal is related by 
[15]: 
 

(9) 
 

0 1
( ) '

0 1

0 1 1

'

( ) ' ( ) .
n

n
n n n

n n

R S Rφ φ
−

−

− −

⎞ ⎞ ⎞⎛ ⎛ ⎛
⎟ ⎟ ⎟⎜ ⎜ ⎜−⎟ ⎟ ⎟⎜ ⎜ ⎜

⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −⎝ ⎝ ⎝⎠ ⎠ ⎠

m m m

n n n

s s s
���������� ������

1 1
' (1)

1 1

1 1

" ( ) "

( ) " " .

n

R Sφ
× −⎞ ⎞ ⎞⎛ ⎛ ⎛

⎟ ⎟ ⎟⎜ ⎜ ⎜− ⎟ ⎟ ⎟⎜ ⎜ ⎜
⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −⎝ ⎝ ⎝⎠ ⎠ ⎠
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( 1) (2)
1 2 2 2 2 1 1( , ) ( )... ( ) ( , ) ( )n

n n nT S R R S Rφ φ φ−
− − −= s s s s

Re (2) ( 1)
1 1 2 2 2 2 1( ) ( , ) ( )... ( ) ( , ).v n

n n nT R S R R Sφ φ φ −
− − −= − − − −s s s s

(2) ( 1)
1 2 1 2 2 1 2( ) ( , ) ( )... ( ) ( , ).

T TT T T T n
n n nT R S R R Sφ φ φ −

− − −= s s s s

cos sin cos sin
( ) ( ) ,

sin cos sin cos
TR Q Q QR Q

φ φ φ φ
φ φ

φ φ φ φ
−⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

(2) (2)
2 1 1 2( , ) ( , ) ,

T

S QS Q= − −s s s s
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where 
 
 

 
 

we find: 
 

(10) 
 

(11) 
 
and: 
 

(12) 
 
Finally, the electric field in the forward path is: 
 

(13) 
 
and in the reverse path: 
 

(14) 

 

3. Results and discussion 

We performed EMC simulations of coherent backscattering of normally incident circularly 
polarized light and linearly polarized light by a turbid medium.  Each simulation used 125,000 
photon packets using the partial photon technique[12] and took less than twenty-four hours on 
a single 2.33 GHz Intel Xeon core to simulate the electric field in both the forward and 
reverse paths covering the backscattering directions at 73 azimuthal detection angles and 76 
zenith detection angles.  The turbid medium is composed of a water suspension of polystyrene 
spheres whose diameter is 0.1 micrometers and refractive index is 1.58984.  The wavelength 
of the incident light is 0.5145 micrometers.  The thickness of the turbid medium is 20 
scattering mean free paths. 

3.1 Intensity and enhancement of circularly polarized light around the exact backscattering 
direction 

Figure 3 illustrates coherent backscattering of normally incident circularly polarized light.  
The top row displays the backscattering intensities of incident coherent light of circular 
polarization (left: I I+ −+ , middle:  I+ , right:  I− ).  I±  is the intensity of the backscattered 
light of the same (or opposite) helicity as that of the incident beam.  The second row displays 
the corresponding intensities for incident incoherent light of circular polarization.  As one can 
see from Fig. 3, concentric circles of equal intensity are visible with or without coherence.  
The intensity also drops off as the zenith angle 

b
θ  of detection increases in all cases.  This 

azimuthal angle 
b

φ  independence is expected as circularly polarized light has by definition 
centric symmetry. 

As displayed in Fig. 4, for coherent backscattered intensities, I+  is greater than I−  close to 

exact backscattering direction and is smaller than I−  for all other angles; for incoherent 

backscattered intensities, I+  is less than I−  for all 
b

θ  simulated.  Enhancement is higher for I+  
 

(2) ( 1)
1 1 2 2 2 2 1( ) ( , ) ( ) ... ( ) ( , ) ,T n

n n nT QR QQS QQR Q QR QQS Qφ φ φ −
− − −= − − − −s s s s

Re ,T vT QT Q=

Re .v TT QT Q=

( ) (1)
1 1 1 0 0( , ) ( ) ( , ) ( ) ,n

out n n n inS R TS Rφ φ− −=E s s s s E

Re (1) ' ' ( )
1 1 1 0( , ) ( ) ( ) ( , ) ( ) .v T n

out n n n n inS R QT QR S Rφ φ φ−= − −E s s s s E

1 0
,

0 1
Q

⎡ ⎤
= ⎢ ⎥−⎣ ⎦
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near the exact escape direction but falls off more sharply than I−  as 

b
θ  increases.  Incoherent 

backscattered light is stronger in the negative helicity channel than in the positive helicity one 
( I I+ −> ) because the helicity asymmetry is negative for backscattered light by small Mie 
scatterers in a turbid medium [16].  Multiply scattered light loses coherence and helicity 
simultaneously upon scattering.  The enhancement factor is larger for the helicity preserved 
channel than the helicity flipped channel near the exact backscattering direction.  This boosts 
the intensity of the coherent backscattered I+  beyond I−  within a narrow angular range around 
the exact backscattering direction.    

3.2 Intensity and enhancement of linearly polarized light around the exact backscattering 
direction 

Figure 5 illustrates the intensity of backscattered light for normally incident linearly polarized 
light around the exact backscattered direction.  The first row in Fig. 5 is, from left to right, 
backscattered x yI I+ , xI , and yI for incident coherent light polarized along the x direction.  

The second row is the same except the incident light is incoherent.  The third row is the same 
as the first row but the zenith detection angle goes from 0 degrees to 2.25 degrees instead.  
Figure 6 displays the angular profiles for coherent backscattering light, incoherent 
backscattering light, and the enhancement factor along three directions corresponding to the 
azimuthal angle of 0, 45, and 90 degrees, respectively. 

Fig. 3.  (Color) Backscattering of normally incident circularly polarized 

light.  The first row displays I I+ −+ , I+ , and I−  from left to right for 

incident coherent light; the bottom row displays the corresponding 
intensities for incident incoherent light.   Each circle depicts the view 

around the exact backscattering direction such that the zenith angle (
b

θ ) 

is the circle’s radius, in degrees, and the azimuthal angle (
b

φ ) is the polar 

angle, in degrees.  
b

θ  starts at zero degrees exactly in the center, the 

exact backscattering direction, and ends at the edge (75 degrees).  
b

φ  is 

zero degrees in the direction of a standard Cartesian positive x-axis and 
increases counterclockwise until 360 degrees.  Notice all I ’s are not 
dependent on the azimuthal angle.  
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Like the case of circularly polarized light with and without coherence, the linearly 
polarized light shows symmetry about the x,y axes, but it no longer has circular symmetry.  
The  intensity  of  the  backscattered  light  of  x  polarization  from  the  incident  coherent  or 

 
 
 
 
 
 
 
 

 
 

 
 
incoherent x-polarized light is, in general, greater than that of y polarization because the 
preference in linear polarization only gets lost after multiple scattering.  As with circularly 
polarized coherent light, backscattering of linearly polarized coherent light is enhanced 
relative to that of incoherent light within the backscattering cone.  xI  is enhanced greater than 

yI  because photons contributing to xI  preserve the original linear polarization and suffer less 

scattering events than photons contributing to yI and hence maintain coherence better.  Unlike 

the case involving circularly polarized light, the magnitude of the intensity of linearly 
polarized light, x yI I+ , is no longer circular symmetric.  This shows that there is a 

dependence on the azimuthal angle 
b

φ  for backscattering of linearly polarized light.  As to 

understand why the patterns for xI ’s and x yI I+ ’s are elongated along the y-axis and the 

pattern for yI ’s is elongated along the x-axis, we point out that light tends to be scattered 

preferably into directions out of the plane of its polarization when scattered by a Mie scatterer. 
Thus the x-component is elongated along the y-axis and squeezed in along the x-axis and the 

Fig. 4.  (Color) Angular profiles of backscattering of circularly polarized light 
versus the zenith detection angle. Coherent backscattered intensities, incoherent 
backscattered intensities, and the enhancement factor are displayed in (a,d), 

(b,e), and (c,f), respectively.  Near exact backscattering direction 
b

~ 0θ , 

coherent backscattered I+  is greater than coherent backscattered I−  and the 

enhancement factor for I+  is larger than I− .  Incoherent backscattered I+  is 

less than incoherent backscattered I− for all
b

θ .  (Note that I−  in (f) is raised 

for 
4

1.75 10×  to show how it compares with I+  within the angular range). 
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y-component is elongated along the x-axis and squeezed in along the y-axis. Both coherent 
and incoherent xI ’s increase slightly with the zenith angle, mostly owing to the influence of 
single scattered light. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 5.  (Color) Backscattering of normally incident linearly polarized light.  
The incident beam is polarized linearly in the x-direction.  Each circle 
depicts the view around the exact backscattering direction such that the 

zenith angle (
b

θ ) is the circle’s radius, in degrees, and the azimuthal angle 

(
b

φ ) is the polar angle, in degrees.  
b

θ  starts at zero degrees exactly in the 

center, the exact backscattering direction, and ends at the edge at 75 degrees 
for the top and middle rows and ends at 2.25 degrees for the bottom row.  

b
φ  is zero degrees in the direction of a standard Cartesian positive x-axis 

and increases counterclockwise until 360 degrees.   

The first row is, from left to right, backscattered x yI I+ , xI , and 

yI for incident coherent light.  The second row is the same except the 

incident light is incoherent.  The third row is the same as the first row but 
the zenith detection angle goes from 0 degrees to 2.25 degrees instead.  In 

the first two rows, x yI I+  is no longer symmetric all around but is 

elongated along the y-axis; similarly, the x-component, xI , is elongated 

along the y-axis, while the y-component, yI , is elongated along the x-axis.  

The coherent backscattered light close to the exact backscattering direction 
in the bottom row reveals more clearly the dependence on the azimuthal 

angle 
b

φ .   
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Closer to the exact backscattering direction (bottom row of Fig. 5), backscattering of 
coherent linearly polarized light appears to display different symmetries.   x yI I+  and xI  

appear to now be elongated along the x-axis and squeezed slightly at the y-axis due to the 
much stronger enhancement factor for backscattered light remitting from along the x-axis [see 
Fig. 6(f)].  Also, yI  displays interesting 4-fold “X” symmetry closer to the exact escape 

direction, which is characteristic of light being multiply scattered by Rayleigh-like particles. 
 

 

 
 
 
 
 

Fig. 6.  (Color) Angular profiles of backscattering of linearly polarized light 
along three directions corresponding to the azimuthal angle of 0, 45, and 90 
degrees, respectively. Coherent backscattered intensities, incoherent 
backscattered intensities, and the enhancement factor are displayed in (a,d), 

(b,e), and (c,f), respectively.  (Note that yI  in (e) is raised for 
4

2.54 10×  to 

show how it compares with xI within the angular range).  
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4. Conclusion 

In conclusion, the Electric field Monte Carlo method for coherent backscattering of light has 
been developed.  This approach simulates coherent backscattering of light directly by adding 
coherently the electric fields of backscattered light propagating in a pair of time-reversed 
paths.  The conventional simulation of coherent backscattering of light based on the Fourier 
transform of the spatial distribution of incoherent backscattering light is valid for scalar waves 
but introduces appreciable errors for polarized light as additional amplitude and phase 
differences between the two partial waves propagating in a pair of time-reversed paths appear.  
These errors originate from the depolarization of light.  The EMC approach properly takes 
into full account of these additional complexities and a detailed study of this issue will be 
published elsewhere.   

The computation of the electric field of light traveling the reverse path was simplified by 
using the time-reversal symmetry of electromagnetic waves that allow for the reuse of the 
majority of the information obtained in the forward path and as a result save a great amount of 
computational time.  The EMC method was then used to investigate coherent backscattering 
of linearly or circularly polarized light from a turbid medium containing Mie scatterers.  The 
coherent backscattering patterns were shown to depend strongly on the polarization of the 
incident light and detection conditions.  
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