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ABSTRACT

We report on a novel Electric field Monte Carlo (EMC) approach for directly simulating coherent backscattering (CBS)
of coherent or partially coherent polarized light. The strong dependence of CBS on the polarization state of light is first
demonstrated. The penetration depth of low coherence backscattering light is then investigated using the EMC approach.
EMC simulations of linearly polarized light backscattering from a human epithelial tissue model show that the penetration
depth of low coherence backscattering light is reduced to the level of one scattering length under illumination by a source
of an extreme low spatial coherence. The penetration depth less than one scattering length has not been obtained even when
the spatial coherence length is shortened to be one percent of the scattering mean free path. It is found that the penetration
depth of low coherence backscattering light may remain orders of magnitude larger than the spatial coherence length of
the partially coherent source when the coherence length is shortened in an attempt to shrink the probing depth of light.
This calls for a careful interpretation of the penetration depth for low coherence backscattering techniques applied to tissue
diagnostics.

Keywords: Electric field Monte Carlo, coherent backscattering, penetration depth, tissue diagnostics, turbid medium, low
coherence backscattering

1. INTRODUCTION

Coherent backscattering (CBS) of light is one intriguing phenomenon which manifests itself as a sharp peak of intensity
centered at exactly the backscattering direction for an incident coherent beam owing to the constructive interference be-
tween coherent waves traveling in a pair of time-reversed trajectories. 1–3 The enhancement may reach a factor of two
close to the exact backscattering direction compared to backscattering of incoherent light. The enhancement profile can be
used to probe the optical properties of the subsurface of highly scattering media. This technique is, in particular, effective
in probing the superficial layer of tissues and has been shown to be sensitive to cancerous changes in epithelial cells. It is,
however, a challenge to model CBS as (1) non-diffusive photons contribute appreciably to CBS, and (2) the enhancement
profile depends strongly on both the polarization and coherent state of light. Most current investigations on CBS have
relied on an indirect approach (CBS is approximated by a Fourier transform of the spatial distribution of backscattered
incoherent light) based on Monte Carlo simulations and are limited to scalar light. 4

In this paper, we first report on a novel Electric field Monte Carlo (EMC) approach for directly simulating coherent
backscattering of coherent or partially coherent polarized light. In EMC, electric field, in contrast to a Stokes vector, is
traced in simulation. The electric fields of backscattered coherent waves traveling in a pair of time-reversed trajectories are
added coherently to produce their interference effect. This presents a clean, intuitive and efficient approach to model CBS.
We first demonstrate the strong dependence of CBS on the polarization state of light. The penetration depth of low coher-
ence backscattering light applied to probe biological samples is then studied by EMC simulations. The simulation results
on linearly polarized partially coherent light backscattering from a human epithelial tissue model show the penetration
depth of low coherence backscattering light reduces with the decrease of the spatial coherence length. Yet the penetration
depth is still larger than one scattering mean free path ls even when the spatial coherence length is shortened to 0.01l s.
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Figure 1. (a) Propagation of a pair of partial waves along the forward and reverse paths. (b) The azimuthal rotations of the local
coordinate system along the forward and reverse paths.

2. ELECTRIC FIELD MONTE CARLO METHOD FOR SIMULATING COHERENT
BACKSCATTERING OF POLARIZED LIGHT

We have extended Electric field Monte Carlo (EMC) method5, 6 for simulating coherent backscattering of polarized light
from a turbid medium. Electric fields of partial waves traveling in a pair of time-reversed paths are added coherently to
simulate their interference, taking into full account their amplitude and phase difference from multiple scattering when
traveling in the pair of paths in opposite orders. Such an extra phase difference than that from their optical path difference
is a pure result of the vector nature of light. EMC simulation results manifest the importance of this vector phase difference
and point out serious errors may result in interpreting CB based on models neglecting this effect.

The propagation of light in a turbid medium is formulated as a series of update of the parallel and perpendicular
polarized electric components Ej (j = 1, 2) with respect to the present scattering plane and a rotation of the local coordinate
system spanned by (m,n, s)T where m, n, and s represent the unit vectors in the directions of parallel polarization,
perpendicular polarization, and propagation, respectively. 5,7 The electric field of light is given by the superposition of its
two components E =E1m + E2n.
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Consider now a beam of light E0 incident along s0 enters a semi-infinite turbid medium and encounters a series of
scattering at sites ri (i = 1, 2, . . . , n) before escaping the medium in the direction sn (see Fig. 1). Denote the initial
reference frame of the incident beam as (m0,n0, s0)T , the local coordinate system as (mi,ni, si)T and the amplitude
scattering matrix as S(i)(si, si−1), respectively, at the ith scattering at ri, φi−1 as the azimuthal angle to rotate ni−1

to ni about the axis si−1, and θi−1 as the scattering angle for light being scattered from s i−1 to si. The unit vector
ni = si−1 × si/ |si−1 × si| is the normal of the scattering plane spanned by s i−1 and si at the ith scattering event. The
outgoing electric field in the forward path can be written as

Eout = S(n)(sn, sn−1)R(φn−1)TS(1)(s1, s0)R(φ0)E0, (1)

where T =
∏n−1

i=2 S(i)(si, si−1)R(φi−1) is an ordered product where terms of a larger index i is placed to the left of terms
of a smaller index. The rotation matrix R is given by

R(φ) =
(

cosφ sin φ
− sinφ cosφ

)

. (2)

The wave traveling in the reverse path is scattered at sites rn, rn−1, . . ., and r1, sequentially in the opposite order than
that in the forward path, with its propagation direction rotating from s 0 to −sn−1, . . ., to−s1, and finally escaping in sn

direction. The electric field in the backward path can be written as

Erev
out = S(1)(sn,−s1)R(φ′

1)T
revR(φ′

n)S(n)(−sn−1, s0)R(φn)E0. (3)

Here R(φn) is the rotation matrix which aligns n0 to the normal n′ = s0 × (−sn−1)/ |s0 × (−sn−1)| of the scattering
plane at the first scattering site, rn, in the reverse path; R(φ′

n) aligns n′ to, −nn−1, the normal of the scattering plane
at the second scattering site, rn−1, in the reverse path; T rev =

∏n−1
i=2 R(φi−1)S(i)(−si−1,−si) is an ordered product

where terms of a larger index i is placed to the right of terms of a smaller index, which represents light being scattered by
sites rn−1, rn−2,. . .,r2 sequentially and the local coordinate system for light being rotated from (m n−1,−nn−1,−sn−1)T

to (m1,−n1,−s1)T after (n − 2) scattering events; and R(φ′
1) is the rotation matrix which aligns −n1 to the normal

n′′ = −s1×sout/ |−s1 × sout| of the scattering plane at the last scattering site, r1, in the reverse path. The other quantities
involved in the reverse path are the same as those in the forward path. The operator T rev relates to T as T rev = QT T Q
where Q = diag(1,−1) owing to the time-reversal symmetry of electromagnetic waves. 8

In the special case when light is backscattered in the exact backscattering direction (q b = k(s0 + sn) = 0), Erev
out

can be simplified as R(φ′
1) = 1 and R(φ′

n) = R(φn−1). If one further rotates the local coordinate systems for E out

and Erev
out to (m0,−n0,−s0)T , the electric field in the forward and the reversed paths can be written as E out = T E0

and Erev
out = T revE0 where T = R(φn)S(n)(sn, sn−1)R(φn−1)TS(1)(s1, s0)R(φ0) and T rev = QT T Q. Inside the

polarization preserved channels, the phase difference between the two partial waves E out and Erev
out can be found to be zero.

It is, however, not true for polarization unpreserved channels even when q b = 0. For example, Eout = T11E0x̂ + T21E0ŷ
and Erev

out = T11E0x̂ − T12E0ŷ for an incident x polarized beam E0 = E0x̂ where Tij is the (i, j)-th element of the
2 × 2 matrix T . The outgoing electric fields are guaranteed to have the common phase in the polarization preserved (x
polarization) channel and are not so in the polarization unpreserved (y polarization) channel. The phases (and magnitudes)
of Eout and Erev

out are, in general, inherently different due to the vector nature of light. This is the reason why CBS obtained
by a Fourier transform of the spatial distribution of backscattered incoherent light is limited to the case of scalar light
and can produce uncontrollable errors in the case of polarized light because the additional phase difference owing to light
depolarization is not taken into account there. This issue will be examined further elsewhere.

The EMC method for simulating CB uses Eqs. (1) and (3) to compute the electric field traveling along a pair of
time-reversed paths. The intensity of the coherent backscattered light is obtained from |E out + Erev

out exp(iδ)|2 where
δ ≡ qb · (rn − r1) is the phase delay introduced by the optical path difference. The backscattered light encountering only
one scattering is computed separately. A partial photon technique 4 is used to improve the efficiency of the EMC simulation.
When the incident light is partially coherent, the following quantity is computed

|Eout|2 + |Erev
out|

2 + 2� [JE∗
outE

rev
out exp(iδ)] (4)

for the intensity of the coherent backscattered light where � denotes the real part and the extra factor,

J =
[

2
J1(ρ/Lc)

ρ/Lc

]2

, (5)
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Figure 2. Backscattering of normally incident circularly polarized light. The first row displays I+ + I−, I+, and I− from left to right
for incident coherent light; the bottom row displays the corresponding intensities for incident incoherent light. Each circle depicts the
view around the exact backscattering direction where the zenith angle (in radian) is the circle’s radius and the azimuthal angle is the
polar angle.

comes from (1) the complex degree of coherence of a partially spatial coherent light of a circular shape with a radius
a � Lc (Lc is the coherence length) at the illumination points separated by a transversal distance of ρ, 9 and (2) the
averaging of light over the illuminated area assuming the size of the illuminated area is much larger than L c. The latter
was ignored in some recent work,10 resulting in an incorrect factor without the power 2.

3. RESULT

3.1. Dependence of coherent backscattering on polarization

We performed EMC simulations of coherent backscattering of normally incident circularly polarized light and linearly
polarized light from a turbid medium. Each simulation used 125,000 photon packets using the partial photon technique
and took less than twenty-four hours on a single 2.33 GHz Intel Xeon core to simulate the electric field in both the forward
and reverse paths covering the backscattering directions at 73 azimuthal detection angles and 76 zenith detection angles.
The turbid medium is composed of a water suspension of Mie scatterers whose diameter is 0.1 micrometers and refractive
index is 1.58984. The wavelength of the incident light is 0.5145 micrometers. The thickness of the turbid medium is 20
scattering mean free paths.

Figure 2 illustrates coherent backscattering of normally incident circularly polarized light. The top row displays the
backscattering intensities of incident coherent light of circular polarization (left: I + + I−, middle: I+, right: I−). I± is
the intensity of the backscattered light of the same (or opposite) helicity as that of the incident beam. The second row
displays the corresponding intensities for incident incoherent light of circular polarization. As one can see from the figure,
the intensity of backscattered light does not depend on the azimuthal angle as circularly polarized light has by definition
centric symmetry.

Figure 3 illustrates the intensity of backscattered light for normally incident linearly polarized light around the exact
backscattered direction. The first row in Figure 3 is, from left to right, backscattered I x + Iy , Ix, and Iy for incident
coherent light. The second row is the same except the incident light is incoherent. The third row is the same as the first
row but the zenith detection angle goes from 0 degrees to 2.25 degrees instead of 75 degrees.
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Figure 3. Backscattering of normally incident linearly polarized light. The incident beam is polarized linearly in the x-direction. Each
circle depicts the view around the exact backscattering direction where the zenith angle (in radian) is the circle’s radius and the azimuthal
angle is the polar angle. The first row is, from left to right, backscattered Ix + Iy, Ix, and Iy for incident coherent light. The second row
is the same except the incident light is incoherent. The third row is the same as the first row but the zenith detection angle goes from 0
degrees to 2.25 degrees instead of 75 degrees.
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Unlike the case involving circularly polarized light, the intensity of backscattered light for an incident linearly polarized
light is no longer circular symmetric. As to understand why the patterns for I x are elongated along the y-axis and the
patterns for Iy are elongated along the x-axis, we point out that light tends to be scattered preferably into directions out of
the plane of its polarization when scattered by a Mie scatterer. Thus the x-component is elongated along the y-axis and
squeezed in along the x-axis and the y-component is elongated along the x-axis and squeezed in along the y-axis. Closer to
the exact backscattering direction (bottom row of Figure 3), backscattering of coherent linearly polarized light appears to
display different symmetries. Ix appears to now be elongated along the x-axis and squeezed slightly at the y-axis owing to
the much stronger enhancement factor for backscattered light remitting from along the x-axis. I y also displays interesting
4-fold “X” symmetry closer to the exact escape direction, which is characteristic of light being multiply scattered by
Rayleigh-like particles. Further details were presented elsewhere.11

3.2. Coherent backscattering from tissue: penetration depth vs spatial coherence length of incident beam
We applied EMC to investigate coherent backscattering of coherent or partially coherent light from tissue. Earlier studies
suggest unified Mie and fractal model describes well light scattering by biological cells and tissues covering the whole
visible spectra and from forward to backward scattering angles. 12–14 Based on that finding, we modeled tissue as a
medium composed of large spherical scatterers and a background with random fluctuation in the refractive index. The size
and the refractive index of the large scatterers were assumed to be 10 µm and 1.400, respectively, to model enlarged nuclei
due to carcinogenesis; the fractal dimension and the cutoff correlation length of the background refractive index fluctuation
were Df = 4.68 and lmax = 0.337 µm, respectively; and the background refractive index of the medium was assumed
1.360. The strength of the background refractive index fluctuation and the number density of the large spherical scatterers
were adjusted to produce the ratio of Mie and fractal scattering, µ s,Mie : µs,bg = 15 : 1, and the scattering mean free path
230 µm at wavelength 630 nm.15 The resulting anisotropy factor, g = 0.975, at wavelength 630 nm, is consistent with the
measured value for epithelia.16 In the simulation, the thickness of the medium is set to be 10l t = 10ls/(1 − g) where lt
and ls are the transport and scattering mean free paths, respectively. The wavelength of the incident linearly polarized light
(polarization along the x direction) is 400 nm. The anisotropy factor is g = 0.964 at this wavelength. The transport and
scattering mean free paths are lt = 4611 µm and ls = 168 µm, respectively.
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Figure 4. (a) The distribution of photons of penetration depth zmax for backscattered incoherent light of parallel or perpendicular
polarization in the exact backscattering direction. (b) The direction of photons of penetration depth zmax for their difference (Ix − iy)
in the exact backscattering direction. Linearly polarized light polarized along x direction is normally incident on the medium.

Figure 4 shows the distribution of photons of penetration depth z max for (a) backscattered incoherent light in the
exact backscattering direction of parallel or perpendicular polarization and (b) their difference (I x − Iy) in the exact
backscattering direction. The penetration depth and its variance for backscattered incoherent light are summarized in Table
1. The difference between parallel and perpendicular polarized backscattered light, I x − Iy , has a reduced penetration
depth at the level of one lt.
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Table 1. The penetration depth and its variance for backscattered incoherent light.
Ix Iy Ix − Iy

〈zmax〉 2.34lt 2.83lt 0.91lt√
〈∆z2

max〉 2.24lt 3.64lt 1.67lt

Low coherence light can be used to reduce the penetration depth of light further. Figure 5 and Table 2 show the much
reduced penetration depth for the backscattering of low coherence light. This low coherence light is the difference between
the coherent backscattered light of parallel polarization and the incoherent background. The distributions of photons versus
the maximum penetration depth for a few cases of varying spatial coherence length are displayed in Fig. 6. One surprising
finding is that although the mean penetration depth tends to decrease with the shrinkage of the spatial coherence length,
the penetration length stays above one ls even for the case that the spatial coherence length is as low as Lc = 0.01ls. That
is, even when Lc = 1.7 µm, the penetration depth is still above 175 µm. This suggests that the penetration depth of low
coherence light may be orders of magnitude larger than the spatial coherence length when L c is shortened in an attempt to
shrink the probing depth of light.
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Figure 5. The penetration depth and its variance for backscattered low coherence light. Note the x axis plots zmax/ls and ls = 0.0364lt .
The errorbars were computed from 6 independent EMC simulations.

Table 2. The penetration depth and its variance for low coherence backscattered light of parallel polarization.
Lc/ls 0.01 0.02 0.05 0.1 0.5 1 2

〈zmax〉 /ls 1.04 ± 0.17 1.19 ± 0.17 1.54 ± 0.21 2.15 ± 0.31 3.93 ± 0.29 5.38 ± 0.20 7.47 ± 0.30√
〈∆z2

max〉/ls 0.68 ± 0.15 0.87 ± 0.16 1.28 ± 0.18 1.81 ± 0.21 3.58 ± 0.17 5.38 ± 0.25 8.38 ± 0.74

The importance of double scattering versus multiple scattering (at least three scattering events) for the low coherence
backscattering light is plotted in Fig. 7. Double scattering light is about 50% of the backscattered low coherence light when
Lc = 0.01ls. The importance of the double scattering light goes down rapidly with the increase of L c. Double scattering
light is about 1/4 and 1/8 of the total backscattered low coherence light for L c = 0.1lsand Lc = 0.5ls, respectively.

Finally, to corroborate with our earlier analysis, the distribution of photons reaching maximum penetration z max for
double scattered light is plotted in Fig. 8. The maximum penetration depth for double scattered light is 〈z max〉 = (0.84 ±
0.02)ls,

√
〈∆z2

max〉 = (0.62±0.02)ls, 〈zmax〉 = (0.95±0.02)ls, and
√
〈∆z2

max〉 = (0.68±0.01)ls for the case of spatial
coherence length of the source, Lc = 0.01ls and Lc = 0.1ls, respectively.
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Figure 6. The distribution of photons of penetration depth zmax for backscattered low coherence light of parallel polarization in the exact
backscattering direction. (a) Lc = 0.01ls , (b) Lc = 0.05ls, (c) Lc = 0.1ls, (d) Lc = 0.5ls, (e) Lc = ls, and (f) Lc = 0.5lt = 13.7ls .

Proc. of SPIE Vol. 6854  68541A-8



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

Lc/l s

D
ou

bl
e 

S
ca

tte
rin

g 
C

on
tr

ib
ut

io
n 

(%
)

Figure 7. The importance of double scattering for the low coherence backscattered light.
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Figure 8. The distribution of photons of penetration depth zmax for backscattered double scattering low coherence light of parallel
polarization in the exact backscattering direction. (a) Lc = 0.01ls and (b) Lc = 0.1ls.
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4. DISCUSSION AND CONCLUSION

In summary, we have presented a novel Electric field Monte Carlo approach for directly simulating coherent backscattering
of coherent or partially coherent polarized light. The strong dependence of CBS on the polarization state of light has been
demonstrated. The penetration depth of low coherence backscattering light has also been investigated using the EMC
approach. EMC simulations on partially coherent light backscattering from a human epithelial tissue model show that the
penetration depth of low coherence light can be reduced to the level of one scattering length under illumination by a source
of an extreme low spatial coherence. The penetration depth less than one scattering length, however, has not been obtained
even when the spatial coherence length is reduced to 0.01l s. This finding is contrary to the conventional assumptions. 10

This calls for a careful interpretation of the penetration depth for low coherence backscattering techniques applied to tissue
diagnostics. A theoretical investigation to understand the observed phenomenon is underway.
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