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ABSTRACT

We report on the effect of the nonlinear multipie passage on optical imaging of an absorption inhomo-
geneity of finite size deep inside a turbid medium based on a cumulant solution to radiative transfer.
An analytical expression for the nonlinear correction factor is derived. Comparison to Monte Carlo
simulations reveals an excellent agreement. The implication on optical imaging is discussed.
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1. INTRODUCTION

The principle of optical imaging of rurbid media (such as tissues) is to locate and reconstruct the optical
properties (absorption and scattering coeflicients) of embedded inhomogeneities (such as tumor) in the
hope of identification by inverting the difference in time-resolved or frequency-modulated photon trans-
mittance due to the presence of the inhomogeneities through ecither iterative or noniterative methods.
The key quantity involved is the weight function which quantifies the influence on the detected signal
due to the change of the optical parameters of the medium. The diffusion approximation to radiative
transfer provides an adequate model for the weight function {or Jacobian) for a small and weak ab-
sorption inhomogeneity far away from both the source and the detector. However. the weight function
predicted by the linear perturbation approaches is no longer valid when the absorption strength is not
small.! This can be attributed to the multiple passage of a photon through one single abnormal site.

The change of the light intensity AT at the detector ry due to the presence of an absorption site at
r from a modulated point source at ry is expressed as

; Al = —3paVG(rg, wit)G(r. w|rs) (1)

to the first order of Born approximation where dj, is the excess absorption of the absorption site whose
volume is V, w is the modulation frequency of light, and G is the propagator of photon migration in
the background medium. Here, the Green's function G(rz,w|r;), in general, depends on the detail of
light scattering inside the medium, and the incident and outgoing directions of light.

When the absorption strength is not small {du,V & 1), photon loss due to multiple passage of the
absorption site is appreciable and can not be ignored. The expression for A7 in Eq. (1) needs to be
‘ modified to include the contributions from multiple visits of the site by the photon. Fig. (1) illustrates
‘ the most important correction (a “self-energy” correction) which takes into account the repeated visits
? made by a photon to the site up to an infinite times.
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Figure 1. Self-energy correction to the multiple passage effect on light absorption.

Assuming that the center of the absorption site is located at © and far away from both the source
and the derector. the change of the detected light. Al is now given by

Al = —Girg..riVou,.r. Z =N H)l-'(i;tu(f'):nG(l—'.wirs) (2)
o)
U .
= -—G(I'!f. o I - “)“a(r}. . T (;(T..u"r,r.-)
1 + .\,....m.»‘l R)‘ LITARE o
where .

‘\',w” « ) = ‘ , / / (r'fl".).-s.' T])(f:grgd:;l‘l (3)

2oL

is the self-propagator which deseribes the probability that o photon revisits the volutne V' oof size R.
Here Girg o rioand Girow|r,) are well meadelled by the center-moved diffusion model as long as the
separations r; - r.. ro—r| >3 [ where I, i~ the transport mean free path of light in the medium.?
However. the diffusion Green's function can not be used tu Eq. {3) to evaluate Nggp(w: R) where r| is
in the proximity of ry. By comparing Eqg. 125 to Eq. {1i. the nonlinear multiple passgage effect of an
absorption site can be summarized by the nonlinear correetion factor 1+ Ngar(w: RV Spq (T)] “! This
factor serves a= o nniversal measure of the nonlinear multiple passage effect as long as the absorption
site is far awiay from both the sonree and the detector and it size 1s much smaller than its distance to

both the ~ource and the detector

In this article, we will derive an apalytical expression for the self-propagator to understand the
nonlinear rnitiple passage effect on licht absorption usine our enmudant solution ro radiative transfer.
The nonlincar correction factor 1« N gp(w: 8 Vaggr 0 of our result is shown to be in an excellent

agreement with thie Monte Carle simulations for continons wave light.

2. THEORY

To take wto wweconnt the higher order contributions fron the absorption inhomogeneity, the behavior
of the ptioton mgration in a short distanee st be considered. Although the photon distribution is
almost isctropie at an absorption site deep inside the edimm, the diffusion approximation is still not
appropriate hereo The separation hetween the two poat~ rooand eo within the volume in Eq. (3) is
small. The photon propagator v raofriosh whch 5 - the probability that a photon propagates
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from position r; with propagation direction s to position ry in time ¢, when r, is in the proximity of
ry. is governed by the radiative transfer equation rather than the diffusion equation.

Recently we have shown that the propagation of photon inside a turbid medium (the radiative
transfer equation) can be solved analytically using a cumulant expansion of the photon distribution
function.* The propagation of pliton was found to transform from an initial ballistic motion at early
time and then gradually to a center-adjusted diffusion at later time. The propagator of photon density
.the Green's function) tn an infinite uniform medium is given by?

(4)

NVir. tr ) ! cxXp (r = ro = soA(t))” t
AR i 8Sg) = T 0 - — Jt

ArD{t)t]3? 4Dt !
ignoring the small difference in the diffusion coefficient along different directions where the absorption
cocfficient is gy, the time-dependent diffusion coefficient is

D) = g {5 = 1= expt=at/] = 5 [t = exp(=et/iyF ) 3)

At) =1[1 —exp(—et/I})] (6)

is the average center of photons which moves with speed ¢ initially and approaches the transport mean
free path l; in the long time limit. The Green's function for parallel geometries can be obtained by the

and

method of image sources.®

2.1. Propagator of an isotropic point source

Let’s now consider the propagator N{r,{jrp.sp) at the inhomogeneity site ry = 0 (the origin of space)
deep inside the medium. The photon distribution at ry is almost isotropic but is anisotropic scattering.
The cffective propagator can then be obtained by averaging (4) over the propagation direction sg of
light over the 4 solid angle. and is given by [see Appendix A]

Nalrt) = g [ PsoN(r.thro.so) = (M)sﬁz{g{(t_)?ff/}m(t) 7)
2 2
This reduces to
Neg{r,t) = E(P&Q;T—ga—tlé(r —ct), fort—0t (8)
and ) 2
N RN o

in early and late time limits where D, = [,¢/3.

The temporal Fourier transforms of the asymptotic equations (8) and (9) are given by

Nott (£, ) exp | (iw = o). (10)

dmric
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anl

Neg(r.w) = k| —L]) — exp(—&(r + 1t))] (11}

8w Drrl, [exp(—

respectively. where & = /3{j, — tw)/l;c whose sign is chosen with a nonnegative real part. In the limit
of sl & <0 10 Eq. (11) simplifies to

1 l
‘ _ oo T<h 12
lim New(r, w) { Fhmr T2l "

This i~ the case. for example, that a continuous wave propagates in a nonabsorbing medium. The
errornons divergence at the zero separation in the diffuse Green’s function

exp(—xr)

1
dr D .1 (13)

Gr,w) =

is rernoved iu onr formulation of the propagation of an isotropic point source.

The asvinprotic equation (11) from the late time limit provides a good approximation for Neg(r,w)
when v 0 [see Fig. (2)]. The contribution to Neg(r,w) when r < [, is from either ballistic or diffusive
ptotons. henoe an improvement to Eq. {10) can be made

1 T

—xl
Ner(row) = ~—s-exp {(iw — ,uﬂ)+J + S_}i?( i)

e S. l 4
I Drls sinh(kr), r<l (14)

irrée c
to inchude the contribution from diffusive photons. The effective propagator in temporal Fourier space
Moo = 0 and its asyvptotic behaviors (10), (11) and (14) are shown in Fig. (2). The diffusion
Green's funeton has a huge error for small r.

2.2. Self propagator for a finite volume

Foroan absorprion site of afinite volume V' deep inside the medinm, say a sphere of radius R < L
wtiere Lois the ditnension of the medinm. the self-propagator Nep(¢: R) for this volume which denotes
a photon revisits the site In tune £ s written as;

. . — ! r 3 3
Nogt ) = V—J/‘j; Negr(lre — ri|, )d°r1d’ry
1 2R
= l—] .\',,g(r.t)ﬂm(r)fi?rr?dr (15)
0
whiere
3r 1 /r\?3
- d —_ I i R . 1
otr R 16 (R) (16)

i~ the chiaraerertie funenion for acaniform sphere.® ® This characteristic function has a form of
olry=1—(S/4Vir+ ... (17)

tor an arbitrary partichs where Sis the surface area of the particle. This self propagator (151 for a finite

voelime i~ quire different trom the self-propagator of a point, obtained by setting 7 = 0 in (4) or (7).
e

. ‘ CXpl—pigh) [ A(t)2

Nt o e frem

(I=D{)3 2 25 ()t (¢>0). (18)
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Figure 2. The effective propagator in temporal Fourier space Neg(r.w — 0) for photon migration in a nonab-
sorbing medium. Its approximations by (14) when r < {, and by Eq. (11) when r > I, are also plotted. The
diffusion Green's function has a huge error for small r.

See Fig. (3). This difference comes from the fact that Eq. (15) includes the contribution from the
ballistic motion of the photon when the photon flies across the site while Eq. {(18) does not contain this
effect. The former uanifests itself in Fig. (3a) as the linear decay of Ngg(t: R)V in the form of ~y(ct)
near the origin.

The self-propagator in temporal Fourier space is thus obtained by a temporal Fourier transform of
(15):
. +oc )
New(w; R) = . Nselp (t: R) exp(iwt)dt (19)
2R

1 “+00
= — dr*/o(r)tl?r'r'z/ dtNeg{r, t) exp(iwt)
Vv 0 0

1 21
= F[g Neg{r, w)vo(r)dmridr.

The lower limit of integration is 07, emphasizing that ¢ = 0 should be excluded from integration. Note
lim,_ g+ Neg(r,t) = 0 for our cumulant photon density function. This is not the case for the diffusion
Green’s function. A numerical quadrature is generally required to compute this self propagator (19). A
crude estimation of Nge(w: R) can be obtained from the asymptotic behavior (11) and (14) of Neg(r, w),
ie.,

_ 1 pmin(2R1) 1 _ r 2 i
Neegp(w: R) =~ V/o o5 eXP [(zw — ,ua)z} ~vo(r)dmredr (20)

1

1 R 2
+V./o m [exp(—rir — l|) — exp(—#{r + 1))} ~o(r)4nr?dr.
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Figure 3. The self-propagators for a finite volume and a point: (a) NVsr(f: R) and (b) Neg(0.¢).

This reduces to

3R | .
&.— "'*U‘R)—i E'FE ) REI'I/Q (2])
Nsete = B ) = 5 0 ikt 416002 826083 R2+ 315 R 1/ _
320R30.¢ >/

for a continuous wave propagating inside a nonabsorbing medium {w = p, = & = 0). This estimation
turns out to be amazingly good. Fig. (4) plots Nggp(w = 0; R) from numerical quadrature and the crude
estimation {21).

3. RESULTS AND DISCUSSION

The tuiltiple passage effect due to the absorption site can now be computed using the self-propagator
Eq. {19} derived here. For large sites. the scif-propagator Ngge(w = 0: [T} increases inverse proportional
to its size (Neep x R1) from Eq. (21): hence the nonlinear correction factor has a form of

- i

t 6ou, .
i . (1+F-_”f R 2)
1+ Ngaf(w: 16)V 0414 (F) alye

dependent on the area of the absorption site for large R.

Monte Carlo methods have been extensively used in simulation of photon migration. ' We perform
Monte Carlo simulations on a untform nonabsorbing and isotropic scattering slab (the anisotropic factor
of scattering ¢ = 0). The units of length of time are chosen such that the mean scattering length
[s = 1/ps = 1 and the speed of light « = 1. The transport mean free path is hence I, = 1 and the
thickness of the slab is assumed L = %0/,. An abeorn+ion gpherical site s located at the center of the
stab (0.0, L/2) with radius R whose absorption 27 ering coetlicient= are prp0 = dp, = 001 and
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Figure 4, The self propagater N, e(w = 0: R) and its estimator. The diffusion self-propagator for continuous
waves is also plotred,

s = pa respectively. The photon is incidert at the origin on the left boundary of the <lub z = 0 in
the normal direction of the ~urface. Each photon is traced until it escapes the slab through either the
left or the right bonndary. The correlated sampling is used in simulation to reduce variance. \ single
simulation is used to compute the emitted photon density ; for the uniform background (nonabsorption
slab} and [ for the ~lab with the absorption site present.

The nonlinear correetion factor 1+ Neett (w [i’ll'fi,uqff')]gkl in Eq. (22) can be extrivted from the
change of the detected light intensity due to the presence of the absorption site in Monte Carlo simula-
tions according to Eq. «2). Fig. . 5) plots the theoretical nonlinear correction factor and that from Monte
Carlo simulations. "Back™ and “Forward” denote the cases where light emits from the Ieft ., () and
the right (z = L} bonndaries. respectively. The agreement between our theoretical result and Monte
Carlo simulations is excetlent except for extremely simnall sizes of inhomogeneities.

Figs. (6) and (7] plot the nenlinear correction factor versus the variation of the modulation frequency
of light for a fixed aborption strength and versus the size of the absorption site with a fixed modulation
frequency of light respectively. With the increase of the modulation frequency of light. the nonlinear
correction becomes les~ accentnated. The dependence on the size of the inhomogeneity is no longer
monotonic for modulated licht while the nonlinear correction factor decreases monotonicaliv with the
increase of the size for contimions wave light. The phase delay is in the order of a few degrees in the
cases investigated.

The typical value of the absorption coeflicient of human tissues is around 0.001p~ ' while the
scattering coefficient 1~ aboar 1ps ‘L. Hence the absorption and scattering ratio is in the order of 0.001.
This should be compared 1o onr results listed here where the corresponding ratio is 0.0 and one order
of magnitude stronger  The nenlinear correction factor for absorption inhomogeneities such o~ tumors

in human tissues is not approcable unless th ~*+ ~“ the inhomogeneity is R ~ 5{; or larzer.
28
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Figure 5. The nonlinear correction factor from the theoretical self-propagator Eq. (19) and Monte Carlo simu-
lations. “Back™ and “Forward” denote light emirtting from the left (z=0)and the right (z -~ £) boundaries. The

excess absorption is dp, = 0.01.
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Figure 6. [he nonlinear correction factor versus the variation of the modulation frequency of livhi. The size of

the absorption ~phere is £ = 3{;. The excess ab~orption
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Figure 7. The nonlinear correction factor versus the variation of the size of the absorption site. The modulation

frequency of light is w = 0.1. The excess absorption is dp, = 0.01.

In conclusion, we have derived an analytical expression for the nonlinear correcrion factor which
agrees well with Monte Carlo simulations. The effect of the nonlinear multiple passage of an absorption
site on optical imaging only becomes appreciable when the size of the inhomogeneitv is 5l or larger for
human tissues.

APPENDIX A. DERIVATION OF Ny (R.T)

The spatial Fourier transform of {4) is given by
N{k,tlrg,s0) = /dar exp(—ik - r)N(r, t|rp,s09) = exp (—ng(t)t — ot — ik 'S()A(i)) EERPXY

Hence, the effective propagator in spatial Fourier space at ry is expressed as

Ne(k,t) = '41_71' /dzsgN(k,tIrg,so) = exp (—kQD(t)t - ,uat) :%%?;(}QW) 2

by averaging (23) over the propagation direction sg of light over the 4w solid angle. The ctfective
propagator in real space is then obtained by an inverse spatial Fourier transform of {24):

3 .
New(r:t) = fg;lj{'gexp(ik-r)em (—kQD(t)t—#at)f’_'Ek%%gD

_ exp(—iqt) {exp l_ (r - A(t))zl — exp [M &l:éif_)ﬁ} }

(43 2(D(E))V/ 2r A(t) 4D(t)t $D()t
_ 2 exp(—pat) __7'2 +AR)? . h raft) -
T @ (DAl AD(t)t 00
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